外卖飞侠
您所在的位置:首页 » 汽修 » 电器 » 电动汽车充电器电路拓扑(二)

电动汽车充电器电路拓扑(二)

有 168 人浏览 日期:2019-05-09   来源:互联网 进入发布者【商铺 放大字体  缩小字体

文章摘要:3 对感应耦合充电变换器的要求根据SAE J-1773标准给出的感应耦合器等效电路,连接电缆和电池负载的特性,可以得出感应耦合充电变

3 对感应耦合充电变换器的要求根据SAE J-1773标准给出的感应耦合器等效电路,连接电缆和电池负载的特性,可以得出感应耦合充电变换器应当满足以下设计标准。3.1 电流源高频链感应耦合充电变换器的副边滤波电路安装在电动汽车上,因而,滤波环节采用容性滤波电路将简化车载电路,从而减轻整个电动汽车的重量。对于容性滤波环节,变换器应当为高频电流源特性。此外,这种电流源型电路对变换器工作频率变化和功率等级变化的敏感程度相对较小,因而,比较容易同时考虑三种充电模式进行电路设计。而且,副边采用容性滤波电路,副边二极管无须采用过压箝位措施。3.2 主开关器件的软开关感应耦合充电变换器的高频化可以减小感应耦合器及车载滤波元件的体积重量,实现电源系统的小型化。但随着频率的不断增高,采用硬开关工作方式的变换器,其开关损耗将大大增高,降低了变换器效率。因而,为了实现更高频率、更高功率级的充电,必须保证主开关器件的软开关,减小开关损耗。3.3 恒频或窄频率变化范围工作感应耦合充电变换器工作于恒频或窄频率变化范围有利于磁性元件及滤波电容的优化设计,同时,必须避免工作在无线电带宽,严格控制这个区域的电磁干扰。对于变频工作,轻载对应高频工作,重载对应低频工作,有利于不同负载情况下的效率一致。3.4 宽负载范围工作感应耦合充电变换器应当能够在宽负载范围内安全工作,包括开路和短路的极限情况。此外,变换器也应当能够工作在涓流充电或均衡充电等模式下。在这些模式下,变换器都应当能保证较高的效率。3.5 感应耦合器的匝比原副边匝比大可以使得原边电流小,从而可采用更细线径的功率传输电缆,更低电流定额的功率器件,效率获得提升。3.6 输入单位功率因数感应耦合充电变换器工作在高频,会对电网造成谐波污染。感应充电技术要得到公众认可,获得广泛使用,必须采取有效措施,如功率因数校正或无功补偿等技术,限制电动汽车感应耦合充电变换器进入电网的总谐波量。就目前而言,充电变换器必须满足IEEE5191992标准或类似的标准。要满足这些标准,加大了感应耦合充电变换器输入部分及整机的复杂程度,增加了成本。而且,根据不同充电等级要求,感应耦合充电变换器可以选择两级结构(前级为PFC+后级为充电器电路)或PFC功能与充电功能一体化的单级电路。4 变换器拓扑选择根据SAE J-1773给出的感应耦合器等效电路元件值,及上述的设计考虑,这里对适用于三种不同充电模式的变换器拓扑进行了考察。如图2所示,电动汽车车载部分包括感应耦合器的插孔部分及AC/DC整流及容?滤波电路。首先,对直接连接电容滤波的整流电路进行考察。适合采用的整流方式有半波整流,中心抽头全波整流及全桥整流。其中,半波整流对变压器的利用率低;全波整流需要副边为中心抽头连接的两个绕组,增加了车载电路的重量和体积;全桥整流对变压器利用率高,比较适合用于这种场合。输出整流采用全桥整流电路,输出滤波器采用电容滤波,输入端采用了PFC电路以限制进入电网的总谐波量不会超标,这里采用的是单独设计的PFC级。低功率时,PFC也可与主充电变换器合为带PFC功能的一体化充电电路。如前所述,充电器设计中很重要的一个考虑是感应耦合器匝比的合理选取。为使设计标准化,按3种充电模式设计的感应耦合充电变换器都必须能够采用相同的电动汽车插座。限制充电器高频变压器副边匝数的因素包括功率范围宽,电气设计限制和机械设计限制。典型的耦合器设计其副边匝数为4匝。对于低充电等级,一般采用1∶1的匝比,对于高充电等级,一般采用2∶1的匝比。对于30kW·h以内的储能能力,随充电状态不同,电动汽车电池电压在DC200~450V范围内变化,变换器拓扑应当能够在这一电池电压变化范围内提供所需的充电电流。4.1 充电模式1这是电动汽车的一种应急充电模式,充电较慢。按这种模式设计的充电器通常随电动汽车携带,在没有标准充电器的情况下使用,从而必须体积小,重量轻,并且成本低。根据这些要求,可采用单级高功率因数变换器,降低整机体积,重量,降低成本,获得较高的整机效率。有两个方案:两个开关管的隔离式Boost变换器。在不采用辅助开关时,单级Boost级电路提供PFC功能并调节输出电压。当输入电压为AC120V时,输入电压峰值为170V,由于变压器副边匝数为4匝,输出电压的调节范围为DC200~400V,因而变压器可以采用1∶1的匝比,原边绕组均采用4匝线圈。典型的电压电流波形如图6所示。当原边开关管S1及S2均开通时,能量储存在输入滤波电感中,同时输出整流管处于关断态。当开关管S1及S2中任一个开关管关断时,储存能量通过原边绕组传输到副边。由于变换器的对称工作,变压器磁通得以复位平衡。为使输入电感伏秒积平衡,必须满足Vinmax≤(Np/Ns)VB(1-Dmin) 假定变压器匝比为1∶1,最大输入电压为170V,则输出电压为DC200V时占空比为0.15,输出电压为DC475V时占空比为0.5。主开关管上的电压应力为2VB。当输出电压为DC400V时,开关管电压应力是DC800V,这一电压应力相当高。而且,由于传输电缆和感应耦合器的漏感,器件电压应力可能会更高。为了限制器件最大电压应力,可以采用图5所示的无损吸收电路。但无论是在哪种情况下,都必须采用1200V电压定额的器件。因高耐压的MOSFET的导通电阻较高,导通损耗就会很大。因而,要考虑采用低导通压降的高压IGBT。但IGBT器件开关损耗也限制了开关频率的提高。开关管的平均电流为ISavg=(1/2)ILavg 对于1.5kW功率等级,输入电流有效值为15A,平均开关电流是13A,峰值电流为22A,需要电流定额至少为30A的开关器件。尽管这个方案提供了比较简单的单级功率变换,但也存在一些缺陷,如半导体器件承受的电压应力较高、输出电压调节性能差,输出电流纹波大。为了降低器件的开关损耗,可以采用图5所示的软开关电路。给MOSFET设计的关断延时确保了IGBT的ZVS关断。在电流上升模式中,MOSFET分担了输出滤波电流,其电压应力为IGBT的一半。从而,可以采用600V的器件。同时,因关断损耗的降低,开关频率得以提高。另一个降低器件电压定额的方案是采用两级变换结构。前级PFC校正环节可以采用带有软开关功能的Boost变换器,允许高频工作。后级DC/DC功率变换级,可以采用半桥串联谐振变换器,提供高频电流链。图7给出了适用于充电模式1的两级功率变换电路结构图。若输入电网电压是AC115V,为了降低DC/DC变换器的电流定额,输出电压可以提升到DC450V。这样Boost级功率开关管可以采用500~600V的MOSFET,半桥变换器的开关器件可以采用300~400V的MOSFET。由于采用半桥工作,感应耦合器可以采用1∶2的匝比。若原边绕组为4匝,则副边绕组为8匝。Boost开关管的电流定额是30A,而半桥变换器开关管的电流定额是20A。
0条 [查看全部]  相关评论
免责声明:
本网站部分内容来源于互联网、合作媒体、企业机构、网友提供和互联网的公开资料等,仅供参考。本网站对站内所有文章的内容、观点保持中立,不对内容的准确性、可靠性或完整性提供任何明示或暗示的保证。如果有侵权等问题,请及时联系我们,我们将在收到通知后第一时间妥善处理该部分内容。
本网站如无意中侵犯了某个媒体或个人的知识产权,请来信或来电告之,本网站将立即删除。
本网站联系方式:电话:0595-28808005,QQ:1193379199,【违规举报
[ 汽修搜索 ]  [ 加入收藏 ]  [ 告诉好友 ]  [ 打印本文 ]  [ 违规举报 ]  [ 关闭窗口 ]

排行榜

  • 本月
  • 本周
免责声明:以上所展示的信息由会员自行提供,内容的真实性、准确性和合法性由发布会员负责,中国汽配网对此不承担任何保证责任。友情提示:交易有风险,行事需谨慎。付款前请先核实对方真实身份信息。